Editing the nearest feature line classifier
نویسندگان
چکیده
............................................................................................................... iii ÖZ ............................................................................................................................. iv ACKNOWLEDGMENT .............................................................................................. v TABLE OF CONTENTS ............................................................................................ vi LIST OF TABLES .................................................................................................... viii LIST OF FIGURES .................................................................................................... ix 1 INTRODUCTION ................................................................................................ 1 1.1 Pattern Classification ..................................................................................... 1 1.2 Objectives ...................................................................................................... 7 1.3 Layout of the Thesis ...................................................................................... 9 2 LITERATURE REVIEW ................................................................................... 10 2.1 The Nearest Neighbor Approach (NN) ....................................................... 10 2.2 Nearest Feature Line (NFL) Method ........................................................... 11 2.3 Rectified Nearest Feature Line Segment (RNFLS) ..................................... 15 2.4 Shortest Feature Line Segment (SFLS) ....................................................... 20 2.5 Comparing NFL, RFLS, and SFLS ............................................................. 22 3 EDITED NEAREST FEATURE LINE APPROACH ....................................... 23 3.1 Error-based FLS Deletion ........................................................................... 23 3.2 Intersection-based Deletion ......................................................................... 28 3.3 Pruning ........................................................................................................ 31 4 EXPERIMENTAL RESULTS ........................................................................... 34 4.1 Experiments on Artificial Data.................................................................... 34
منابع مشابه
Fault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method
In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...
متن کاملA Novel Nearest Feature Space Classifier for Face Recognition
Nearest feature space (NFS) classifier had been proposed to enhance the limited prototypes’ representation capacity. In this paper, we provide a formal definition and a theoretical analysis to Feature Space. Furthermore, a novel NFS classifier is proposed for face recognition. Experimental results using the ORL face database indicate that the proposed NFS obtains a better recognition performanc...
متن کاملAvoiding the interpolation inaccuracy in nearest feature line classifier by spectral feature analysis
1 In nearest feature line approach, the representational capacity of a given training set is 2 generalized by defining feature lines passing through each pair of samples belonging to the same 3 class. This technique is shown to provide superior performance on various classification problems 4 than the nearest neighbor approach. From the performance point of view, the major weakness 5 of this te...
متن کاملA Co-evolutionary Framework for Nearest Neighbor Enhancement: Combining Instance and Feature Weighting with Instance Selection
The nearest neighbor rule is one of the most representative methods in data mining. In recent years, a great amount of proposals have arisen for improving its performance. Among them, instance selection is highlighted due to its capabilities for improving the accuracy of the classifier and its efficiency simultaneously, by editing noise and reducing considerably the size of the training set. It...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Intell. Data Anal.
دوره 19 شماره
صفحات -
تاریخ انتشار 2015